
Goal:  Use understanding of 
physically-relevant scales to 
reduce the complexity of the 

governing equations 

•  Scale analysis relevant to the tropics 
[large-scale synoptic systems]* 

*Reminder:  Midlatitude scale analysis in dynamics 



Momentum Equations in Spherical 
Coordinates 

! 

du
dt
"
uv tan#
Re

+
uw
Re

= "
1
$
%p
%x

+ 2&v sin# " 2&wcos# + Frx

dv
dt

+
u2 tan#
Re

+
vw
Re

= "
1
$
%p
%y

" 2&usin# + Fry

dw
dt

"
u2 + v 2

Re

= "
1
$
%p
%z

+ 2&ucos# " g + Frz

total derivative pressure 
gradient 

Coriolis gravity friction 

To what extent are these terms important? 



Scale Analysis 
[following Holton §11.2] 

•  Goal: To determine relative importance of the 
terms in the basic equations for particular 
scales of motion. 

•  Approach: Estimate the following quantities 
1) The magnitude of the field variables. 
2) The amplitudes of fluctuations in the field 

variables. [To estimate derivatives.] 
3) The characteristic length, depth and time scales 

on which these fluctuations occur. 

But first a coordinate change… 



Vertical coordinate transformation 
It is often convenient to replace height z by pressure p.  Consider p=p(x,z), 
where p(x,z) is assumed to be monotonic in z and x represents any horizontal 
coordinate, and the system of level curves sketched below: 
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z Along each level curve, p(x,z) = constant.  So 
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For further convenience, we introduce the geopotential: 
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The notation ∇h denotes horizontal components of the 
gradient operator.   



Conservation of mass in pressure 
coordinate 

Consider a parcel of mass δm which is 
conserved following the motion of the flow: 

! 

1
"m

d("m)
dt

= 0

Assuming a density ρ, δm = ρδV, and: 
1

!"V
d(!"V )
dt

= 0 = g
("x"y"p)

d
dt

"x"y"p
g

!

"
#

$

%
&

! 

! 0 = 1
!x

d!x
dt

+
1
!y

d!y
dt

+
1
!p

d!p
dt

"

#
$

%

&
'

(

)
*

+

,
-=

!u
!x

+
!v
!y

+
!"
!p

"

#
$

%

&
'

!
!u
!x

+
!v
!y

+
!"
! p

"

#
$

%

&
'= 0

No density, hence no explicit time-dependence 
appearing in the mass conservation relationship 
expressed in pressure in the vertical. 
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Pressure velocity 



“log pressure” coordinates 
For the purposes of scale analysis, we’ll consider the natural logarithm of 
pressure rather than pressure itself:  
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where ps is a standard reference pressure and H is a scale height defined as: 
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For an isothermal 
atmosphere at 
temperature Ts [~global 
surface temperature], 
z*=z. 

However, for realistic 
temperature profiles in the 
troposphere, the 
difference between z* and 
z is usually small. 



Scaling quantities 

Scale Symbol Value 
Horizontal 

velocity U 10 m s-1 

Horizontal length L 106 m 

Vertical depth H 104 m 

Time τ~L/U 105 s 

Vertical velocity W TBD 
Geopotential 

fluctuation 
δΦ TBD 

Temperature 
fluctuation δT TBD 



Physical Parameters 
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We’ll consider both middle and tropical latitudes…. 

Coriolis parameter 



Continuity + Horizontal Equations 
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In the horizontal, for 
nondivergent flow, ∇h⋅v=0. 
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To perform the horizontal scaling, we’ll consider the magnitudes of terms 
relative to the horizontal advective scale: 
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Continuity + Horizontal Equations 
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For mid-latitudes (λ~45°),  f~10-4, so Ro ~ 0.1.  Thus, the Coriolis term (~10) 
must be balanced by the geopotential gradient term, implying: 
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"# ~ fUL [~1000 m2s-2] 
At low [tropical] latitudes, f≤10-5, so Ro ≥1, so Coriolis may not balance the 
pressure gradient force.  In fact, for Ro ≥10, we expect: 
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Thus, for synoptic disturbances in the tropics, geopoential perturbations are an 
order of magnitude smaller than for similar-sized systems in mid latitudes, 
which has several important consequences… 
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Vertical equation 
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The above scaling implies hydrostatic equilibrium: 
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It is assumed that the geopotential consists of a mean component, which is a function of the 
vertical coordinate only, and a synoptic perturbation; since we’re evaluating synoptic scale motion, 
the scaling applies to the perturbation part.   



(Dry) Thermodynamic equation 
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For δT~0.3 K, the first term on the left-hand side is of order 0.3K x 10-5 s-1 ~ 
0.3K day-1.  When precipitation is absent, the diabatic heating term on the 
right-hand side comprises long-wave radiative emission, which is observed to 
be of order 1 K day-1.  Thus,  

For the tropical tropopshere, N-1~100 s, so:   
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In the absence of precipitation, synoptic scale tropical vertical velocities are 
much smaller than in similar-sized extratropical systems.  Also, from the 
continuity equation, the divergence of horizontal wind is of order 10-7; thus the 
flow is essentially nondivergent. 



(Brief overview of) precipitating tropical 
synoptic systems 

What modifications are anticipated for precipitating tropical synoptic systems?  For 
precipitating tropical synoptic systems, rain rates of 20 mm day-1 are typical.  For a unit 
area cross-section, this precipitation rate implies a daily condensation of 20 kg of H20.  
[Think density x area, which is dimensionally mass/length.]  Since Lc~2.5 x 106 J kg-1, 
the net condensational energy input per day into a unit area atmospheric column is:  
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Assuming this heating is spread uniformly over the entire tropospheric depth, or over a 
unit area column of tropospheric air mass, implies a daily heating rate per unit air mass, 
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As we’ll see later, the distribution of condensational heating via tropical convection is 
nonuniformly distributed in the vertical and tends to maximize in the mid- to upper-
troposphere (~300 to 400 mb), with heating rates of order 10 K day-1.  Recalling that the 
radiative heating rate is ~ 1 K day-1, the above implies a vertical velocity scale ~ 10x 
larger than in nonprecipitating regions.  This in turn implies a relatively large component 
of the divergent flow.  


